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Invited comment on Article by Camerlenghi, Dunson,

Lijoi, Prünster and Rodŕıguez

Mario Beraha∗,† and Alessandra Guglielmi∗

We thank the authors (also denoted by Camerlenghi et al. hereafter) for a very interesting paper,

which addresses the problem of testing homogeneity between two populations/groups. They start

from pointing out a drawback of the Nested Dirichlet Process (NDP) by Rodriguez et al. (2008), i.e.

its degeneracy to the exchangeable case: when the NDP is a prior for two population distributions

(or for the corresponding mixing measures in mixture models), it forces homogeneity across the

two samples in case of ties across samples at the observed or latent level. In fact, as pointed out

by Camerlenghi et al., the NDP does not accommodate for shared atoms across populations. This

limitation, which is clear from the definition of NDP in Rodriguez et al. (2008), has a strong impact

on the inference: as showed in this paper, if two populations share at least one common latent

variable in the mixture model, the posterior distribution would either identify the two random

measures associated to the populations as completely different (i.e. it would not recover the shared

components) or it would identify them as identical. The need for a more flexible framework is

elegantly addressed by the authors who propose a novel class of Latent Nested Nonparametric

priors, where a shared random measure is added to the draws from a Nested Random Measure,

hence accommodating for shared atoms. There are two key ideas in their model: (i) nesting discrete

random probability measures as in the case of the nested Dirichlet process by Rodriguez et al.

(2008), and (ii) contaminating the population distributions with a common component as in Müller

et al. (2004) (or as in Lijoi et al., 2014). The latter yields dependency among the random probability

measures of the populations and avoids the degeneracy issue pointed out by the authors, while the

former accounts for testing homogeneity in two-sample problems.

As a comment on the computational perspective, we note that their MCMC method relies on

the analytical expression of the Partially Exchangeable Partition Probability Function (pEPPF),

which the authors obtain in the special case of I = 2 populations. However, the sampling scheme

poses significant computational issues even in the case of I = 2, needing to rely on Monte Carlo

integration to approximate some intractable integrals.

In this comment, we address the problem of extending their mixture model class for testing

homogeneity of I populations, with I > 2, according to the first path the authors mention in their

concluding remarks. In particular, we assume the mixture model for I populations/groups, when the

mixing random probability measures (p̃1, . . . , p̃I) have a prior distribution that is the Latent Nested
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Dirichlet process (LNDP) measure. This prior is more manageable than their general proposal,

thanks to the stick-breaking representation of all the random probability measures involved, which

can be easily truncated to give an approximation, which is straightforward to compute. Here, we

apply the Latent Nested Dirichlet Process mixtures to simulated datasets from this paper, while

the authors adopt a different latent nested nonparametric prior for I = 2 populations. By using the

truncation approximation of stick breaking random probabilities, we do not need to resort to the

pEPPF anymore and we are able to extend the analysis to cases with more than two populations.

However, our experience shows that this vanilla-truncation MCMC scheme does not scale well

with I: the computational burden becomes demanding even for moderate values of I, which are

common when testing homogeneity for different groups, for example while comparing a treatment

in a small group of hospitals. If one assumes the LNDP as a prior for the mixing random probability

measures (p̃1, . . . , p̃I), we have showed that we really need to derive either the posterior character-

ization of the LNDP, as suggested by the authors, or significantly more efficient truncation-based

schemes.

1 Latent Nested Dirichlet Process mixture models

In this section, we make explicit the details of the definition of the Latent Nested Process that was

introduced by the authors, and then consider the Latent Nested Dirichlet Process as the mixing

distributions for I different populations. We also apply this model to synthetic data.

Consider the (Euclidean) space Θ and let MΘ be the space of all bounded measures on Θ. Let

q̃ be a random probability measure, q̃ ∼ NRMI[ν,MΘ] with intensity ν(ds, dm) = cρ(s)dsQ(dm);

here c > 0, ρ is a function defined on R+ under conditions∫ +∞

0

min{1, s}ρ(s)ds < +∞,
∫ +∞

0

ρ(s)ds = +∞,

and Q is a probability measure on MΘ. We skip the details on the σ-algebras attached to the

spaces we consider. We know that q̃ =
∑∞
j=1 ω̃jδη̃j , where {(ω̃j , η̃j)} are the points of a Poisson

process with mean intensity ν(ds, dm). In particular, η̃j
iid∼ Q, i.e. each η̃j is itself a CRM on Θ

with Lévy intensity ν0(ds, dθ) = c0ρ0(s)dsQ0(dθ), which implies η̃j =
∑∞
k=1 J

j
kδθjk

, where, for each

j, {(Jjk , θ
j
k), k ≥ 1} are the points of a Poisson process with mean intensity ν0(ds, dθ). Here c0 > 0,

ρ0 is a function on R+ under the same conditions as ρ(s) and Q0 is a probability measure on Θ.

Finally, let qS be the law of µS , a CRM on Θ, with Lévy intensity ν∗0 = γν0, where γ > 0.

Similarly to the authors, we define a Latent Nested Process as a collection of random probability

measures p̃1, p̃2, . . . , p̃I on Θ such that

p̃i =
µi + µs

µi(X) + µs(X)
= wi

µi
µi(X)

+ (1− wi)
µS

µS(X)
, i = 1, . . . , I,
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where

µ1, µ2, . . . , µI , µS |q̃, qS ∼ q̃ × q̃ . . .× q̃ × qS .

In particular, if we set ρ(s) = ρ0(s) = s−1e−s, s > 0, we obtain the Latent Nested Dirichlet Process;

since the µi’s and µS are independent gamma processes in this case, the µi’s also being iid, and

pi =
µi

µi(X)
, i = 1, . . . , I, pS =

µS
µS(X)

,

i.e. pi and pS are draws from two independent Dirichlet processes, we have

pi | G
iid∼ G =

∞∑
l=1

πlδG∗l , i = 1, . . . , I, (1.1)

pS =

∞∑
h=1

wSh δθSh , (1.2)

whereG is a Nested Dirichlet process, i.e. a DP whose atoms are DPs. We use notation (p̃1, . . . , p̃I) ∼

LNDP (γ, ν0, ν) for

p̃i = wipi + (1− wi)pS , i = 1, . . . , I.

Note that each p̃i is a mixture of two components: an idiosyncratic component pi and a shared

component pS , where the latter preserves heterogeneity across populations even when shared values

are present. As pointed out by the authors, the random indicator functions of the two events

p̃i = p̃i′ and pi = pi′ coincide a.s., if i 6= i′. This latter event has positive prior probability for any

couple of distinct indexes i, i′ in {1, . . . , I}. Summing up, this prior induces a prior distribution for

the parameter ρ, the partition of population indexes {1, 2, . . . , I}: two populations are clustered

together if they share the same mixing measure.

Now, suppose that we have data from I different populations (e.g. measurements on patients

in different hospitals). Let yji, j = 1, . . . , ni, be observations for different subjects in population i,

for i = 1, . . . , I. We assume that, for any i = 1, . . . , I,

yji | p̃i
iid∼
∫

Θ

f(yji | θ)p̃i(dθ), j = 1, . . . , ni

(p̃1, . . . p̃I) ∼ LNDP (γ, ν0, ν).

(1.3)

For computing posterior inference, instead of considering model (1.3), we consider a truncation

approximation of the stick-breaking representation of the LNDP, similarly as in Rodriguez et al.

(2008). In particular, instead of (1.1)-(1.2), we consider the pi’s iid from a L-H truncation of a

nested Dirichlet process, i.e.,

pi|G
iid∼

L∑
l=1

πlδG∗l , πl = νl

l−1∏
s=1

(1− νs), νl
iid∼ Beta(1, c) l = 1, . . . , L− 1, νL = 1

G∗l =

H∑
h=1

wlhδθ∗lh , wlh = ulh

h−1∏
s=1

(1− uls), ulh
iid∼ Beta(1, c0) h = 1, . . . ,H − 1, ulH = 1

θ∗lh
iid∼ Q0 for all l, h
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and pS itself is an H–truncated Dirichlet Process of parameters γc0 and Q0. Since wi is defined

from the total masses of independent gamma processes, then

wi =
µi(Θ)

µi(Θ) + µS(Θ)
∼ Beta(c0, γc0), i = 1, . . . , I.

This truncation approximation could be exploited to design blocked Gibbs sampling schemes as

in Ishwaran and James (2001), or more general truncation schemes (see the references in Argiento

et al., 2016); in the next section we use this truncation approximation in order to write a JAGS

code to fit the data from the examples.

2 Simulation Study

We have fitted the truncated Latent Nested Dirichlet Process mixture model to simulated data

via JAGS, using L = 30 and H = 50. The parametric kernel f(y|θ) in (1.3) is the unidimensional

Gaussian density with mean θ and variance σ2, i.e. θ = (µ, σ). For every simulated dataset, we

have considered the base measure Q0(µ, σ) = N
(
0, λσ2

)
× U(σ | 0, 2), with λ = 10. Moreover we

set c = c0 = 1 and let γ ∼ U(0.25, 5). Chains were run for 10,000 iterations after 15,000 iterations

of adaptation and 5,000 iterations of burn-in, thinning every 10 iterations for a final sample size

equal to 1,000.

First, we considered two of the simulated scenarios examined in the paper, specifically scenarios

I and II, and we simulated n1 = n2 = 100 observations from each group. Scenario I corresponds to

full exchangeability across two groups of data, i.e.

yj1, yj2
iid∼ 0.5N (0, 1) + 0.5N (5, 1),

while scenario II corresponds to partial exchangeability with a shared component between the

populations

yj1
iid∼ 0.9N (5, 0.6) + 0.1N (10, 0.6) yj2

iid∼ 0.1N (5, 0.6) + 0.9N (0, 0.6).

Both scenarios were tested in the paper under the same Gaussian kernel we consider, with a latent

nested σ-stable mixture model instead of the LNDP as a prior for the mixing distributions. We

have considered another simulated dataset from I = 3 populations, with n1 = n2 = n3 = 100, that

is

yj1
iid∼ 0.2N (5, 0.6) + 0.8N (0, 0.6) yj2

iid∼ 0.2N (5, 0.6) + 0.8N (0, 0.6) yj3
iid∼ N (−3, 0.6),

which corresponds to full exchangeability across populations 1, 2 but not across 1, 2, 3.

As pointed out by the authors, Bayes factors for homogeneity tests across populations are

available as a by-product of their model. Homogeneity tests with hypotheses

H0 : p̃i = p̃j vs H1 : p̃i 6= p̃j (2.1)
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are performed by the authors in case (i, j) = (1, 2), by introducing the auxiliary variable I{p̃1=p̃2}

in their MCMC state space, so that draws from its posterior are straightforwardly available. In our

formulation of the LNDP mixture model instead, we resort to the cluster allocation variables of

the nested process, sj = l iff pj = G∗l for j = 1, . . . , I, to perform the same tests.

In case of I > 2 populations, it is also possible to perform global tests on the cluster structure

arising among the populations. In our new (third) scenario, we are interested in testing the presence

of one single group against the presence of three groups (for example), i.e.

H0 : p̃1 = p̃2 = p̃3 vs H1 : p̃1 6= p̃2 6= p̃3.

This type of tests are straightforward to obtain, since they are based on the EPPF of the nested

process. Indeed, a priori, P (p̃1 = p̃2 = p̃3) = P (ρ = {1, 2, 3}) while P (p̃1 6= p̃2 6= p̃3) = P (ρ =

{1}, {2}, {3}), where ρ is the partition of {1, 2, 3} arising from the nested process; posterior odds

are obtained once again monitoring the values of the allocation variables sj ’s. The Bayes factor for

this specific test equals 0.18, providing evidence in favour of H1.

Scenario (i, j) BF01

I (1, 2) 1.00

II (1, 2) 0.08

3 populations
(1, 2) 1.27
(1, 3) 0.07
(2, 3) 0.09

Table 1: Bayes factors for hypotheses (2.1) under the three simulated scenarios.

Table 1 reports the Bayes factors for tests (2.1) computed via our MCMC, while Figure 1 dis-

plays the predictive densities in each population. As far as the Bayes factors are concerned, we have

computed those corresponding to hypotheses (2.1) with (i, j) = (1, 2) for scenarios I and II, while

for the new scenario we consider all the possible pairwise tests, i.e. (i, j) = (1, 2), (1, 3), (2, 3). The

Bayes factors in Table 1 correctly indicate strong evidence in favour of the alternative hypothesis

for the second and third test of the 3-populations scenario, as well as for scenario II, while for the

other tests there is no clear evidence in either direction. The BF01 for scenario II is much larger

than the corresponding Bayes factor computed by the authors, obtained under the latent nested

σ-stable mixture model; similarly, our BF01 for scenario I is equal to 1, while the authors obtain

a larger value, giving evidence in favour of the true hypothesis. Of course, the mixing of the chain

produced by JAGS, especially for scenario I with equal mixture weights, is generally worse than

any specifically-designed MCMC scheme, as the one described by the authors. However, the density

estimates (in black) for scenario II in Figure 1(b) are accurate, unlike those in Figure 1(a) where we

clearly see that the JAGS code is not able to recover the weights in the true density in each group,

while recovering the locations. Predictive densities in Figure 1(c) are close to the true population

distributions in all the groups, even though we experienced the same difficulties in recovering the
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(a) Scenario I
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(b) Scenario II
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(c) New scenario

Figure 1: Density estimates for scenario I (a), II (b) and the new scenario with I = 3 populations
(c). In every panel, the black line denotes the predictive density in the population, while the red
line is the density which generated the data.

true weights of all the mixtures because of the large number of allocation parameters in the JAGS

model, which makes sampling much less efficient.

To conclude our experiments, we have also designed a scenario with 4 populations simulating

ni = 100 observations from each true population distribution, which is a mixture of two Gaussian

components. The Bayes factors for hypotheses (2.1), computed via our JAGS MCMC, are in

agreement with the true underlying clustering, that is {1, 2}, {3, 4}. However, even with as little

as 100 observations per group, the MCMC simulation took more than 8 hours to run. To make

a comparison, in our experience, the runtime of our JAGS code for I = 3 populations was about

2.5 times longer than for I = 2 populations, and that for I = 4 groups was approximately 4 times

larger than for I = 2.

Despite the construction of ad-hoc Gibbs sampling schemes, possibly based on the truncated

stick breaking representation, which could greatly improve the performances we reported, we believe

that this model, generalized as we have presented here to the case of I > 2 populations and using

a truncation approximation for the LNDP, contains inherent computational difficulties which are

not easy to deal with. Assuming a larger value for I, even though a moderate value as in case of,

e.g., comparing a patient treatment in a few dozens of hospitals, will still be challenging using the

model we have considered here, taking into action the suggestion Camerlenghi et al. made in their

concluding remarks.
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