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Abstract—Mutual information has been successfully adopted
in filter feature-selection methods to assess both the relevancy
of a subset of features in predicting the target variable and the
redundancy with respect to other variables. However, existing
algorithms are mostly heuristic and do not offer any guarantee on
the proposed solution. In this paper, we provide novel theoretical
results showing that conditional mutual information naturally
arises when bounding the ideal regression/classification errors
achieved by different subsets of features. Leveraging on these
insights, we propose a novel stopping condition for backward and
forward greedy methods which ensures that the ideal prediction
error using the selected feature subset remains bounded by a
user-specified threshold. We provide numerical simulations to
support our theoretical claims and compare to common heuristic
methods.

Index Terms—feature selection, mutual information, regres-
sion, classification, supervised learning, machine learning

I. INTRODUCTION

The abundance of massive datasets composed of thousands
of attributes and the widespread use of learning models able
of large representational power pose a significant challenge
to machine learning algorithms. Feature selection allows to
effectively address some of these challenges with a potential
benefit in terms of computational costs, generalization capa-
bilities and interpretability. A large variety of approaches has
been proposed by the machine learning community [1]. A
simple dimension for classifying the feature selection methods
is whether they are aware of the underlying learning model.
A first group of methods take advantage of this knowledge
and try to identify the best subset of features for the specific
model class. This group can be further split into wrapper
and embedded methods. Wrappers [2] employ the learning
process as a subroutine of the feature selection process,
using the validation error of the trained model as a score
to decide whether to keep or discard a feature. Clearly, this
potentially leads to good generalization capabilities at the cost
of iterating the learning process multiple times, which might
become impractical for high-dimensional datasets. Embedded
methods [3], still assume the knowledge of the model class, but
the feature selection and the learning process are carried out
together (a remarkable example is [4] in which a generalization
bound on the SVM is optimized for both learning the features
and the model). Although less demanding than wrappers from
a computational standpoint, embedded methods heavily rely
on the peculiar properties of the model class. A second group

of methods do not incorporate knowledge of the model class.
These approaches are known as filters. Filters [5] perform
the feature selection using scores that are independent of the
underlying learning model. For this reason, they tend not to
overfit but they might result less effective than wrappers and
embedded methods as they are general across all the possible
model classes. From a computational perspective, filters are
the most efficient feature selection methods.

Filter methods have been deeply studied in the supervised
learning field [6]. A relevant amount of literature focused on
using the mutual information (MI) as a score for identifying
a suitable subset of features [7]. The MI [8] is an index of
statistical dependence between random variables. Intuitively,
the MI measures how much knowing the value of one variable
reduces the uncertainty on the other. Differently from other
indexes, like the Pearson correlation coefficient, the MI is able
to capture also non–linear dependences and is invariant under
invertible and differentiable transformations of the random
variables [8]. Thanks to these properties, the MI has been
employed extensively as a score for filter methods [9]–[14].
Nonetheless, all these techniques are rather empirical as they
try to encode with MI the intuition that “a feature can be
discarded if it is useless for predicting the target or it is
predictable from the other features”. This notion can be
made more formal by introducing the notion of relevance,
redundancy and complementarity [7].

To the best of our knowledge, the only work that draws
a connection among the several approaches based on the MI
is [15]. The authors claim that selecting features using as a
score the conditional mutual information (CMI) is equivalent
to maximizing the conditional likelihood between the target
and the features. This observation provides a justification to
the well–known iterative backward and forward algorithms in
which the features are considered one-by-one for insertion in
or removal from the feature set, like in the Markov Blanket
approach [16]. Although this work offers a wide perspective
on the feature selection methods based on the MI, it does
not investigate the relation between the mutual information of
a feature set and the prediction error, which, of course, will
depend on the specific choice of the model class.

In this paper, we address the problem of controlling the
prediction (regression and classification) error when perform-
ing the feature selection process via CMI. We claim that
selecting features using CMI has the effect on controlling the



ideal error, i.e., the error attained by the Bayes classifier for
classification and the minimum MSE (Mean Squared Error)
model for regression. We start in Section II by revising some
fundamental concepts of information theory. In Section III, we
introduce our main theoretical contribution. We derive a pair
of inequalities, one for regression (Section III-A) and one for
classification (Section III-C), that upper bound the increment
of the ideal error obtained by removing a set of features.
Such increment is expressed in terms of the CMI between the
target and the removed features, given the remaining features.
These results support the intuition that a set of features can
be safely removed if it does not increase significantly the
“information” about the target, assuming we observed the
remaining features. Since the result holds for the ideal error,
we assert that a filter method based on CMI selects the
features assuming that the model employed for solving the
regression/classification problem has “infinite capacity”. We
show that, when considering linear models for regression, the
bound does not hold and we propose an adaptation for this
specific case (Section III-B). These results can be effectively
employed to derive a novel and principled stopping condition
for the feature selection process (Section IV). Differently from
the typical stopping conditions, such as a fixed number of
features or the increment of the score, our approach allows
to explicitly control the ideal error introduced in the feature
selection process. After contextualizing our work in the feature
selection literature (Section V), we evaluate our approach in
comparison with several different stopping criteria on both
synthetic and real datasets (Section VI).

II. PRELIMINARIES

We indicate with X ⊆ Rd the feature space and with Y the
target space. In case of classification Y = {y1, y2, . . . , ym}
is a finite set of classes, whereas in case of regression
Y ⊆ R is a subset of the real numbers. We consider a
distribution p(X, Y ) over X × Y from which a finite dataset
D = {(xi, yi)|i ∈ {1, . . . , N}} of N i.i.d. instances is drawn,
i.e., (xi, yi) ∼ p(X, Y ) for all i. For regression problems,
we assume there exists B ∈ R such that |Y | ≤ B almost
surely. A key term for a regression/classification problem is
the conditional distribution p(Y |x), which allows to predict
the target associated with any given x ∈ X .

A. Notation

Given a (random) vector X ∈ X and a set of indices
A ⊆ {1, 2, . . . , d}, we denote by XA the vector of components
of X whose indices are in A. Notice that the vectors XA and
XĀ, for Ā = {1, 2, . . . , d} \A, form a partition of X .

For a d-dimensional random vector X we indicate
with EX [X] the d-dimensional vector of the expec-
tations of each component Given two random vec-
tors X and Y , we indicate with CovX,Y [X,Y ] =

EX,Y

[
(X − EX [X]) (Y − EY [Y ])

T
]

the covariance matrix
between the two. We indicate with CovX [X] = CovX [X,X]
the covariance matrix of X . We denote with VarX [X] =
tr(CovX [X,X]) the trace of the covariance matrix of X .

Whenever clear by the context we will remove the subscripts
from E, Var and Cov. Given two random (scalar) random
variables X and Y we denote with ρ(X,Y ) = Cov[X,Y ]√

Var[X]Var[Y ]

the Pearson correlation coefficient between X and Y .

B. Entropy and Mutual Information

We now introduce the basic concepts from information
theory that we employ in the remaining of this paper. For
simplicity, we provide the definitions for continuous random
variables, although all these concepts straightforwardly gener-
alize to discrete variables [8].

The entropy H(X) of a random variable X , having p
as probability density function, is a common measure of
uncertainty:

H(X) := EX [p(X)] = −
∫
p(x) log p(x)dx. (1)

Given two distributions p and q, we define the Kullback-
Leibler (KL) divergence as:

DKL(p‖q) := EX
[
p(X)

q(X)

]
=

∫
p(x) log

p(x)

q(x)
dx.

The mutual information (MI) between two random variables
X and Y is defined as:

I(X;Y ) := H(Y )−H(Y |X)

= EX [DKL(p(Y |X)‖p(Y ))]

=

∫ ∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy,

Intuitively, the MI between X and Y represents the reduction
in the uncertainty of Y after observing X (and viceversa). No-
tice that the MI is symmetric, i.e., I(X;Y ) = I(Y ;X). This
definition can be straightforwardly extended by conditioning
on a third random variable Z, obtaining the conditional mutual
information (CMI) between X and Y given Z:
I(X;Y |Z) := EZ [I(X|Z;Y |Z)]

= EZ [EX [DKL(p(Y |X,Z)‖p(Y |Z))]]

=

∫
p(z)

∫ ∫
p(x, y|z) log

p(x, y|z)
p(x|z)p(y|z)dxdydz.

The CMI fulfills the useful chain rule:
I(X;Y, Z) = I(X;Z) + I(X;Y |Z). (2)

As we shall see later, the CMI can be used to define
a score of both relevancy and redundancy for our feature
selection problem, which arises naturally when bounding the
ideal regression/classification error. Given a set of indices A,
we denote the CMI between Y and XA given XĀ as:

ν(A) := I(Y ;XA|XĀ).

This quantity intuitively represents the importance of the
feature subset XA in predicting the target Y given that we
are also using XĀ.

III. FEATURE SELECTION VIA MUTUAL INFORMATION

In this section, we introduce our novel theoretical results
that shed light on the relationship between CMI and the
ideal prediction error. Then, in the next section, we employ
these results to propose a new stopping condition that ensures



bounded error. We discuss relationships to existing bounds in
Section V.

A. Bounding the Regression Error

We start by analyzing an ideal regression problem under
the mean square error (MSE) criterion. Consider the subspace
XĀ of X which includes only the features with indices in Ā
and define GĀ = {g : XĀ → Y} as the space of all functions
mapping XĀ to Y . The ideal regression problem consists of
finding the function g∗ ∈ GĀ minimizing the expected MSE,

inf
g∈GĀ

EX,Y

[
(Y − g(XĀ))

2
]
, (3)

where the expectation is taken under the full distribution
p(X, Y ), i.e., under all features and the target. The following
result relates the ideal error to the expected CMI ν(A).

Theorem 1. Let σ2 = EX,Y

[
(Y − E[Y |X])

2
]

be the irre-
ducible error and A be a set of indices, then the regression
error obtained by removing features XA can be bounded as:

inf
g∈GĀ

EX,Y

[
(Y − g(XĀ))

2
]
≤ σ2 + 2B2ν(A). (4)

Proof. The infimum infg∈GĀ EX,Y

[
(Y − g(XĀ))2] is attained by

the minimum MSE regression function g(xĀ) = EY [Y |xĀ]. There-
fore, we have

inf
g∈GĀ

EX,Y

[
(Y − g(XĀ))2] = EX,Y

[
(Y − E[Y |XĀ])2]

=

∫
p(x)

∫
p(y|x) (y − E[Y |xĀ]± E[Y |x])2 dydx

= σ2 +

∫
p(x) (E[Y |x]− E[Y |xĀ])2 dx

= σ2 +

∫
p(x)

(∫
y (p(y|x)− p(y|xĀ)) dy

)2

dx

≤ σ2 +B2

∫
p(x)

(∫
|p(y|x)− p(y|xĀ)| dy

)2

dx

≤ σ2 + 2B2

∫
p(x)DKL (p(·|x)‖p(·|xĀ)) dx

= σ2 + 2B2ν(A).

The second inequality follows from Pinsker’s inequality [17]–[19]
by noting that

∫
|p(y|x)− p(y|xĀ)|dy = 2DTV(p(·|x)‖p(·|xĀ))

is twice the total variation distance between p(·|x) and p(·|xĀ).

Theorem 1 tells us that the minimum possible MSE that we
can achieve by predicting Y only with the feature subset Ā can
be bounded by the CMI between Y and XA, conditioned on
XĀ. This result formalizes the intuitive belief that whenever
a subset of features A has low relevancy or high redundancy
(i.e., ν(A) is small), such features can be safely removed
without affecting the resulting prediction error too much. In
fact, when ν(A) = 0, Theorem 1 proves that it is possible
to achieve the irreducible MSE σ2 without using any of the
features in A.

Interestingly, this score accounts for both the relevancy of
XA in the prediction of Y and its redundancy with respect
to the other features XĀ. To better verify this fact, we can
rewrite ν(A) as:∫

p(xĀ)

∫
p(y,xA|xĀ) log

p(y,xA|xĀ)

p(y|xĀ)p(xA|xĀ)
dxdy, (5)

and notice that the inner integral is zero whenever: i) xĀ
perfectly predicts y, i.e., xA is irrelevant, or ii) xĀ perfectly
predicts xA, i.e., xA is redundant. In both cases we have
p(y,xA|xĀ) = p(y|xĀ)p(xA|xĀ) and, thus, ν(A) = 0.

B. Regression Error in Linear Models

As previously mentioned the actual error introduced by
removing a set of features depends on the choice of the model
class. We remark that Theorem 1 bounds the ideal prediction
error, i.e., the error achieved by a model of infinite capacity.
Unfortunately, in practical applications the chosen model has
often very limited capacity (e.g., linear). In such cases, our
bound, and all CMI-based methods, might be over-optimistic.
Indeed, there are situations in which CMI leads to discarding
an apparently redundant feature which would reveal itself to
be useful when considering the finite capacity of the chosen
model. Let us consider the following example.

Example 1. Consider a regression problem with two features,
X1 and X2, and target Y = aX1 + bX2, for two scalars a
and b. Furthermore, assume that X1 = Z and X2 = eZ , for
Z ∼ N (0, σ2), with σ2 � 0. It is clear that ν({x1}) ' 0 and
ν({x2}) ' 0, since the two features can be perfectly recovered
from one another. However, if the chosen model is linear, both
features are fundamental for predicting Y . In fact, the squared
Pearson correlation coefficients ρ2(X1, Y ) and ρ2(X2, Y ) are
high, while ρ2(X1, X2) is small.

We show now that, when linear models are involved, the
correlation between the features and between a feature and
the target can be used to bound the regression error.

Theorem 2. Let σ2
X→Y = minw,b EX,Y

[(
Y −wTX − b

)2]
be the minimum MSE of the linear model that predicts
Y with all the features and (w∗, b∗) be the optimal
weights and bias. Let A be a set of indices and

σ2
XĀ→Xi

= minwi,Ā,bi,Ā
EXi,XĀ

[(
Xi −wT

i,Ā
XĀ − bi,Ā

)2
]

be the minimum MSE of the linear model that predicts Xi

from the features XĀ. Then the minimum MSE of the linear
model that predicts Y from the features XĀ can be bounded
as:

min
wĀ,bĀ

EX,Y

[(
Y −wT

ĀXĀ − bĀ
)2] 1

2

≤ σX→Y +
√
|A|
∑
i∈A

w∗i σXĀ→Xi
.

Furthermore, let σ2
Y = Var[Y ]. If ρ(Xi, Xj) = 0 for all i, j ∈

A and i 6= j and ρ(Xi, Xj) = 0 for all i, j ∈ Ā and i 6= j,1

then it holds that:

min
wĀ,bĀ

EX,Y

[(
Y −wT

ĀXĀ − bĀ
)2] 1

2 ≤ σX→Y

+
√
|A|σY

∑
i∈A

ρ(Y,Xi)

(
1−

∑
j∈Ā

ρ(Xi, Xj)
2

) 1
2

.

1We are requiring that all features in XA are uncorrelated and that all
features in XĀ are uncorrelated; but, of course, there might exist i ∈ A and
j ∈ Ā such that ρ(Xi, Xj) 6= 0.



Proof. Consider the linear regression problem for predicting Y with
all the features, minw,b EY,X

[(
Y −wTX − b

)2]
, having (w∗, b∗)

as the optimal solution. The expression of the optimal weights and
the minimum MSE σ2 are given by:

w∗ = Cov[X]−1Cov[X, Y ].

σ2
X→Y = Var[Y ]− Cov[Y,X]Cov[X]−1Cov[X, Y ].

Consider now a partition of X into XĀ and XA and
the linear regression problem to predict XA from XĀ, i.e.,
minWA,Ā,bA,Ā

EXA,XĀ

[(
XA −WA,ĀXĀ − bA,Ā

)2]. We can
express the optimal weights and the minimum MSE as:

W ∗
A,Ā = Cov[XA,XĀ]Cov[XĀ]−1.

σ2
XĀ→Xi

= Var[Xi]− Cov[Xi,XĀ]Cov[XĀ]−1Cov[XĀ, Xi]

Let us now consider the linear regression problem for predicting Y
from the features XĀ.

min
wĀ,bĀ

EX,Y

[(
Y −wT

ĀXĀ − bĀ
)2
] 1

2

≤ EX,Y

[(
Y −w∗Ā

T
XĀ − b

∗ ±w∗A
T (

W ∗
A,ĀXĀ − b∗A,Ā

))2
] 1

2

≤ EX,Y

[(
Y −w∗Ā

T
XĀ −w∗A

T
XA − b∗

)2
] 1

2

+ EX,Y

[(
w∗A

T (
XA −W ∗

A,ĀXĀ − b∗A,Ā

))2
] 1

2

(6)

≤ σX→Y +
√
|A|EX

[∑
i∈A

w∗i
2
(
Xi −w∗i,Ā

T
XĀ − b

∗
i,Ā

)2
] 1

2

(7)

= σX→Y +
√
|A|

(∑
i∈A

w∗i
2EX

[(
Xi −w∗i,Ā

T
XĀ − b

∗
i,Ā

)2
]) 1

2

≤ σX→Y +
√
|A|
∑
i∈A

w∗i EX

[(
Xi −w∗i,Ā

T
XĀ − b

∗
i,Ā

)2
] 1

2

(8)

= σX→Y +
√
|A|
∑
i∈A

w∗i σXĀ→Xi ,

where (6) derives from Minkowski inequality after having summed
and subtracted w∗A

TXA, (7) is obtained from Cauchy-Schwarz in-
equality (for d dimensional vectors we have (aT b)2 ≤ d

∑d
i=1 a

2
i b

2
i )

and (8) derives from subadditivity of the square root.
By recalling that w∗i =

∑
j∈A Cov[Xi, Xj ]

−1Cov[Xj , Y ], for
uncorrelated features we get:

w∗i = Var[Xi]
−1Cov[Xi, Y ] =

(
Var[Y ]

Var[Xi]

) 1
2

ρ(Y,Xi).

If the features in XĀ are uncorrelated as well, we have that Cov[XĀ]
is diagonal. Therefore, we have:

σ2
XĀ→Xi

= Var[Xi]−
∑
j∈Ā

Cov[Xi, Xj ]
2Var[Xj ]

−1

= Var[Xi]

(
1−

∑
j∈Ā

ρ(Xi, Xj)
2

)
,

from which the result follows directly.

This result allows highlighting two relevant points. First,
when considering linear models what matters is the correlation
among the features and the correlation between the features
and the class. Most importantly, the Pearson correlation co-
efficient is a weaker index of dependency between random

variables compared to the MI as it identifies linear dependency
only. As suggested by Example 1, using MI for discarding
features when the model used for prediction is too weak might
be dangerous. Second, Theorem 2 highlights once again two
relevant properties of the features. In the linear case, a feature
Xi is relevant if it is highly correlated with the target Y ,
i.e., ρ2(Y,Xi) � 0, and a feature is redundant if it is highly
correlated with the others, i.e., ρ2(Xi, Xj) � 0. Both these
contributions appear clearly in Theorem 2.

C. Bounding the Classification Error

A similar result to Theorem 1 can be obtained for an ideal
classification problem. Here the goal is to find the function
g∗ ∈ GĀ minimizing the ideal prediction loss,

inf
g∈GĀ

EX,Y

[
1{Y 6=g(XĀ)}

]
, (9)

where 1E denotes the indicator function over an event E.

Theorem 3. Let ε = EX,Y

[
1{Y 6=arg maxy∈Y p(y|X)}

]
be the

Bayes error and A be a set of indices, then the classification
error obtained by removing features XA can be bounded as:

inf
g∈GĀ

EX,Y

[
1{Y 6=g(XĀ)}

]
≤ ε+

√
2ν(A). (10)

Proof. Let us denote by y∗ = arg maxy∈Y p(y|x) the optimal
prediction given x and by y∗Ā = arg maxy∈Y p(y|xĀ) the optimal
prediction given the subset of features in Ā. We have:

inf
g∈GĀ

EX,Y

[
1{Y 6=g(XĀ)}

]
= EX,Y

[
1{Y 6=arg maxy∈Y p(y|XĀ)}

]
= EX,Y

[
1{Y 6=arg maxy∈Y p(y|XĀ)} ± 1{Y 6=arg maxy∈Y p(y|X)}

]
= ε+

∫
p(x) (p(y∗|x)− p(y∗Ā|x)) dx

= ε+

∫
p(x) (p(y∗|x)± p(y∗Ā|xĀ)− p(y∗Ā|x)) dx.

Let us now bound the term inside the expectation point-wisely. For
the term p(y∗|x)− p(y∗Ā|xĀ), we have:

p(y∗|x)− p(y∗Ā|xĀ) = max
y∈Y

p(y|x)−max
y∈Y

p(y|xĀ)

≤max
y∈Y
|p(y|x)− p(y|xĀ)|

≤DTV(p(·|x)‖p(·|xĀ)).

Following a similar argument for the term p(y∗Ā|xĀ)− p(y∗Ā|x), we
find that the inner term is always less or equal than the total variation
distance between p(·|x) and p(·|xĀ). Then, by applying Pinsker’s
inequality:

inf
g∈GĀ

EX,Y

[
1{Y 6=g(XĀ)}

]
≤ ε+ 2

∫
p(x)DTV(p(·|x)‖p(·|xĀ))dx

≤ ε+

∫
p(x)

√
2DKL (p(·|x)‖p(·|xĀ))dx

≤ ε+

√
2

∫
p(x)DKL (p(·|x)‖p(·|xĀ)) dx

= ε+
√

2ν(A).

Here the last inequality follows from Jensen’s inequality and the
concavity of the square root.

Similarly to the result for regression problems, Theorem
3 bounds the minimum ideal classification error achievable
by a model which uses only the subset of features in Ā
by the score ν(A). The astute reader might have noticed
a slightly better dependence on ν(A) with respect to the



regression case (square root versus linear). This is due to the
fact that minimizing the MSE gives rise to a squared total
variation distance between the conditional distributions p(·|x)
and p(·|xĀ), which leads to a linear dependence on ν(A).

IV. ALGORITHMS

In this section, we rephrase the forward and backward
feature selection algorithms based on the findings of Section
III. Furthermore, we propose a novel stopping condition that
allows to bound the error introduced by removing a set of
features, assuming the predictor will make the best possible
use of the remaining features. Actively searching for the
optimal subset of features is combinatorial in the number of
features and, thus, unfeasible [20]. Instead, we can start from
the complete feature set and remove one feature at a time,
greedily minimizing the score. In this spirit, we propose the
following iterative procedure.

Algorithm 1 (Backward Elimination). Given a dataset X, Y ,
select a threshold δ ≥ 0, the maximum error that the filter is
allowed to introduce. Then:

• Start with the full feature set, i.e., A1 = ∅, where At
denotes the index set of features removed prior to step t.

• For each step t = 1, 2 . . . , remove the feature that
minimizes the conditional mutual information between
itself and the target Y given the remaining features, i.e.:

it = arg min
i
I(Y ;Xi|XĀt

\Xi), (11)

It = I(Y ;Xit |XĀt
\Xit), (12)

At+1 = At ∪ {it} (13)

• Stop as soon as
∑t
h=1 Ih ≥ δ

2B2 for regression and∑t
h=1 Ih ≥ δ2

2 for classification. The selected features
are the remaining ones, indexed by AT , where T is the
last step.

This algorithm, apart from the stopping condition, is de-
scribed by Brown et al. [15] as Backward Elimination with
Mutual Information. The same authors show that this pro-
cedure greedily maximizes the conditional likelihood of the
selected features given the target, as long as Ik is always zero.
This would correspond to selecting δ = 0 as a threshold in
our algorithm. The same backward elimination step is used
as a subroutine in the IAMB algorithm [16]. Our stopping
condition allows selecting the maximum error that the feature
selection procedure is allowed to add to the ideal error, i.e.,
the unavoidable error that even a perfect predictor using all
the features would commit. The fact that the threshold will be
actually observed is guaranteed by the following result.

Theorem 4. Algorithm 1 achieves an error of σ2 + δ for
regression, where σ2 is the irreducible error and ε + δ for
classification, where ε is the Bayes error.

Proof. We prove the result for regression using Theorem 1. The proof
for classification is analogous, but based on Theorem 3. We have:

inf
g∈GĀ

EX,Y

[(
Y − g(XĀt

)
)2] ≤ σ2 + 2B2ν(At), (14)

where t is any iteration of the algorithm. By repeatedly applying the
chain rule of CMI (2), we can rewrite the score as:

ν(At+1) = I(Y ;XAt+1 |XĀt+1
)

= I(Y ;X)− I(Y ;XĀt+1
)

= I(Y ;XAt ,XĀt
)− I(Y ;XĀt+1

)

= I(Y ;XAt |XĀt
) + I(Y ;XĀt

)− I(Y ;XĀt+1
)

= ν(At) + I(Y ;Xit ,XĀt+1
)− I(Y ;XĀt+1

)

= ν(At) + I(Y ;Xit |XĀt+1
)± I(Y ;XĀt+1

)

= ν(At) + I(Y ;Xit |XĀt
\Xit)

= ν(At) + It. (15)
Noting that ν(A1) = I(Y ; ∅|X) = 0, we can unroll this recursive
equation, obtaining:

ν(AT ) =

T−1∑
t=1

It ≤
δ

2B2
, (16)

where the inequality is due to the stopping condition. Plugging (16)
into (14), we get the thesis.

Our Theorems 1 and 3 suggest that a backward elimination
procedure allows keeping the error controlled. In the follow-
ing, we argue that we can resort also to forward selection
methods and still have a guarantee on the error. Using the
chain rule of the CMI we can express our score ν(A) as:

ν(A) = I(Y ;X)− I(Y ;XĀ),

where XĀ is the set of features that have not been eliminated
yet. If we plug this equation into the bounds of Theorems 1
and 3 we get:

inf
g∈GĀ

EX,Y

[
(Y − g(XĀ))

2
]
≤ σ2 + 2B2 [I(Y ;X)− I(Y ;XĀ)] ,

inf
g∈GĀ

EX,Y

[
1{Y 6=g(XĀ)}

]
≤ ε+

√
2 [I(Y ;X)− I(Y ;XĀ)],

for the regression and classification cases respectively. Since
I(Y ;X) does not depend on the selected features XĀ, in
order to minimize the bound we need to maximize the term
I(Y ;XĀ). This matches the intuition that we should select
the features that provide the maximum information on the
class. Using this result, we can easly provide a forward
feature selection algorithm.

Algorithm 2 (Forward Selection). Given a dataset X, Y ,
select a threshold δ ≥ 0, the maximum error that the filter
is allowed to introduce. Then:

• Start with the empty feature set, i.e., A1 = ∅, where At
denotes the index set of features selected prior to step t.

• For each step t = 1, 2 . . . , add the feature that maximizes
the conditional mutual information between itself and the
target Y given the remaining features, i.e.:

it = arg max
i
I(Y ;Xi|XAt

), (17)

It = I(Y ;Xit |XAt), (18)
At+1 = At ∪ {it} (19)

• Stop as soon as
∑t
h=1 Ih ≥ δ

2B2 for regression and∑t
h=1 Ih ≥ δ2

2 for classification. The selected features
are those indexed by AT , where T is the last step.



Apart from the stopping condition, this algorithm was also
presented in Brown et al. [15] and named Forward Selection
with Mutual Information. Like for the backward case, we are
able to provide a guarantee on the final error.

Theorem 5. Algorithm 2 achieves an error of σ2 − δ +
2B2I(Y ;X) for regression, where σ2 is the irreducible error
and ε−δ+

√
2I(Y ;X) for classification, where ε is the Bayes

error.

Proof. We prove the result just for the regression case, as the
derivation for classification is analogous. Using the chain rule (2),
we have the following recursion:

I(Y ;XAt+1) = I(Y ;XAt , Xit)

= I(Y ;Xit |XAt) + I(Y ;XAt)

= It + I(Y ;XAt).

By observing that I(Y ;XA1) = I(Y ; ∅) = 0, we unroll the
recursion and we get

I(Y ;XAT ) =

T∑
t=1

It ≥
δ

2B2
,

from which the result follows.

A. Estimation of the Conditional Mutual Information

So far, we have assumed to be able to compute the CMI
I(Y ;Xi|XĀt

\ Xi) and I(Y ;Xi|XAt) exactly. In practice,
they need to be estimated from data. Estimating the MI can be
reduced to the estimation of several entropies [21]; numerous
methods have been employed in feature selection, either based
on nearest neighbors approaches [22] or on histograms [15].
The main challenge arise in classification where we need
to estimate CMI between a discrete variable (the class) and
possibly continuous features. For this reason, we resort to the
recent nearest neighbor estimator proposed by [23], which
collapses to the more traditional KSG estimator [24] when
both X and Y have a continuous density. These estimators
are proved to be consistent when the number of samples and
the number of neighbors grows to infinity [23].

V. RELATED WORKS

A related theoretical study of feature selection via MI has
been recently proposed by Brown et al. [15]. The authors show
that the problem of finding the minimal feature subset such
that the conditional likelihood of the targets is maximized is
equivalent to minimizing the CMI. Based on this result, com-
mon heuristics for information-theoretic feature selection can
be seen as iteratively maximizing the conditional likelihood.
Similarly, we show a connection between the CMI and the
optimal prediction error. Differently from [15], we additionally
propose a novel stopping condition that is well motivated by
our theoretical findings.

In the information theory literature, [25] also analyzes
the connection between CMI and minimum mean square
error, deriving a similar result to our Theorem 1. However,
classification problems (i.e., minimum zero-one loss) are not
considered and the focus is not on feature selection.

The authors of [22] propose a nearest neighbor estimator
for the CMI and show how it can be used in a classic forward

feature selection algorithm. One of the authors’ questions is
how to devise a suitable stopping condition for such methods.
Here we propose a possible answer: our stopping criterion
(Section IV) is intuitive, applicable to both forward and
backward algorithms, and theoretically well-grounded.

Several existing approaches use linear correlation measures
to score the different features [26]–[30]. Such algorithms are
mostly based on the heuristic intuition that a good feature
should be highly correlated with the class and lowly correlated
with the other features. Instead, we provide a more theoretical
justification for this claim (Section III), showing a connection
between these two properties and the minimum MSE.

VI. EXPERIMENTS

We evaluate the performance of our stopping condition
on synthetic and real-world datasets, by comparing different
stopping criteria, employing a backward feature selection
approach:
• error (ER): stop when the bound on the prediction error,

as in Theorem 4, is greater than a fixed threshold δ;
• feature score (FS): stop when a feature with a CMI score

greater than a fixed threshold δ is encountered;
• delta feature score (∆FS): stop when the difference

between the score of two consecutive features is greater
than a threshold δ (as in knee-elbow analysis);

• number of features (#F): stop with exactly k features are
selected.

For all the experiments, we use Python’s scikit-learn imple-
mentation of SVM with default parameters (RBF kernel and
C = 1).

A. Synthetic Data

The synthetic data consist in several binary classification
problems. Each dataset is composed of 500 samples. The
datasets are generated, similarly to [31], as follows: fix the
number of useful features k (i.e., the number of features
that are actually needed to predict the class); given Y = 1,
X1, . . . Xk are N (0, 1) conditioned on

∑k
i=1Xi > 3(k − 2),

while Xk+1, . . . X15 ∼ N (0, 1). The choice of k will be
specified for each experiment.

Stopping Condition Comparison. The first experiment
is meant to compare the stopping conditions presented
above across datasets for classification with different a num-
ber of useful features. We generate 6 independent prob-
lems with 30 features. Among the 30 features only k ∈
{9, 12, 15, 18, 21, 24} are useful to predict the target. In Figure
1, we show the accuracy of SVM for the different datasets and
different stopping conditions. We can see that our stopping
condition (ER) performs better than choosing a fixed number
of features (#F) in most cases. More notably, the feature se-
lection algorithm shows a greater robustness w.r.t the stopping
condition’s hyper parameter with our error-based criterion, as
one would expect. Furthermore, in Figure 1, we notice that
the delta feature score (∆FS) (which is similar to the knee-
elbow analysis) is highly inefficient (as the outputs are almost
identical for both choices of the threshold) and is clearly the
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Fig. 1. SVM test accuracy for different choices of the number of features that generate the problem and different stopping criteria.

worst performer. The feature score (FS) stopping criterion is
highly sensitive to the threshold, achieving good performance
with a low threshold and a significantly worse performance
when the threshold is increased. The choice of the threshold
in both ∆FS and FS poses a significant problem as it has no
relation to the prediction error and its optimal value is highly
problem-specific. On the contrary, for #F and ER criteria the
hyper parameter has a precise meaning and thus it can be
selected more easily.

Robustness. To have a better grasp of the proposed
stopping criterion we generate 50 binary classification prob-
lems, with the only difference of choosing k accordingly
to k ∼ Uniform(3, 15) and having only 15 total features. In
Figure 2 we show the accuracy of a SVM classifier on a
test set, after the feature selection has been performed, as a
function of the error threshold δ. Moreover, we overlay the
fraction of selected features over the original 15. We can notice
two interesting facts. i) Even with a threshold close to zero2

a great number of features is discarded. ii) The classification
accuracy is rather constant despite a high error threshold while
the number of selected features decreases significantly. We
can conclude that our method was effectively able to identify
irrelevant features and discard them.

CMI Estimation. To see how the estimation of the (condi-
tional) mutual information impacts on the performance of the
stopping condition, we consider one last problem, generated as
before with N = 30 features and fixed k = 10. In Figure 3, we
look at the performance of an SVM classifier on the same test
set for increasing sizes (number of samples) of the training set.
We select the number of neighbors in the mutual information
estimation as a fixed fraction of the training set size. Notice
how, when the data points are too few, the estimated mutual
information “overfits”, and actually very little to no features
are discarded in the feature selection step. As a consequence,
also the SVM classifier overfits the training set and leads to
poor performance on the test set. On the other hand, as the
number of samples increases, the estimation of the mutual
information becomes more precise and the appropriate set
of features is selected, resulting in a great increase in the
classification accuracy on the test set. Moreover, for a small
number of data points, the number of neighbors used in the
MI estimation is not too relevant, while it is evident that for a

2Since the CMI is estimated from data as well, we cannot set the threshold
to exactly 0, thus, we used 0.05 in the experiments.

TABLE I
REAL DATA RESULTS.

Dataset δ = 0.05 δ = 0.1 δ = 0.25 δ = 0.5 δ = 1.0
ORL 0.8 0.75 0.7 0.7375 0.7125

warpAR10P 0.97 0.98 0.98 0.98 0.98
glass* 0.99 0.99 0.99 0.99 0.99
wine 0.96 0.96 0.96 0.95 0.83

ALLAML 1.0 1.0 1.0 0.92 0.78
*: no feature removed

large enough sample size, it is better to increase the number
of neighbors.

B. Real-World Data

We further tested the proposed feature selection algorithm
on several popular real world datasets, publicly available on
the ASU feature selection website and the UCI repository [32].
In Table I, we report the classification accuracy on a test set
after the feature selection procedure for different values of the
threshold δ. We notice how the upper bound on the error is
stricter in some examples and larger in others. In particular,
the actual classification accuracy follows the theoretical error
bound in cases where the dataset has a bigger number of
samples and a number of features that is not too big, for
example ORL. Conversely, if the number of features is too
big in comparison to the number of samples, the error bound
tends to be pessimistic and the actual accuracy is much bigger
than the expected one (warpAR10P, ALLAML). Interestingly
enough, the number of classes does not play a significant role.

VII. DISCUSSION AND CONCLUSION

Conditional Mutual Information is an effective statistical
tool to perform feature selection via filter methods. In this
paper, we proposed a novel theoretical analysis showing that
using CMI allows to control the ideal prediction error, assum-
ing that the trained model has infinite capacity. This is a rather
new insight, as filter methods are typically employed when
no assumptions are made on the underlying trained model.
We proved that, when using linear models, the correlation
coefficient becomes a suitable criterion for ranking and se-
lecting features. On the bases of our findings, we proposed a
new stopping condition, that can be applied to both forward
and backward feature selection, with theoretical guarantees
on the prediction error. The experimental evaluation showed
that, compared against classical filter methods and stopping
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Fig. 3. Classification accuracy on a binary classification dataset, generated with
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of neighbors used for estimating the MI.

criteria, our approach, besides the theoretical foundation, is
less sensitive to the choice of the threshold hyper-parameter
and allows reaching state-of-the-art results.
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