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Why feature selection

Datasets with thousands (or millions) of
features have become a standard in
Machine Learning tasks.

I Interpretability issues

I Generalization issues

I Computational issues

Very few samples
Need to give doctors meaningful results
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Vocabulary size ∼ 100K
Very easy to overfit.
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Why feature selection

Datasets with thousands (or millions) of
features have become a standard in
Machine Learning tasks.

I Interpretability issues

I Generalization issues

I Computational issues

“ More data beats clever algorithms, but
better data beats more data. ”
Peter Norvig
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Feature selection: Main Idea

Feature selection: distinguish between

I Relevant features

I Irrelevant features

I Redundant features

y = x2
1 + x2 + 0× x3 + 3x4

x1, x2 and x4 are relevant
x3 is irrelevant

If x4 = −x1 + 10x2

→ x4 is redundant!
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Feature selection at a glance

Wrappers

I Learning as a sub-routine of feature
selection algorithm

Embedded methods

I Feature selection and learning carried out
together

I Example: LASSO regression, Feature
Selection for SVMs (Weston et al. 2001)

Filter methods

I No knowledge of the learning algorithm
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Feature selection via Mutual Information

Mutual Information is a measure of statistical dependence between random variables.

I (X ;Y ) =

∫
Y

∫
X
p(x , y) log

(
p(x , y)

p(x)p(y)

)
dxdy

Conditional Mutual Information I (X ;Y | Z ) used by Brown et al. (2012):
“A feature can be discarded if it is useless for predicting the target or it is predictable
from the other features”.

I (X ;Y | Z ) =

∫
Z
DLK

(
P(X ,Y )|Z || PX |ZPY |Z

)
p(z)dz

So far, proposed filter methods based on MI are “empirical” as they do not investigate
the relation between the mutual information of a feature set and the prediction error
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Problem statement

Let X be the space of covariates and Y the space of response.

g : X → Y

I A is the index set of features to be removed, Ā its complementary.

I XĀ ⊂ X which includes only the features with indices in Ā

I GĀ = {g : XĀ → Y}, G = {g : X → Y}

We want to bound:
inf

g∈GĀ

EX ,Y [L (Y , g(XĀ))]

Where L is a suitable loss function.
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Bound on the regression error

Under Mean Squared Error Loss, we know that

arg inf
g∈G

EX ,Y

[
(Y − g(X ))2

]
= E[Y | X ]

Theorem 1

inf
g∈GĀ

EX ,Y

[
(Y − g(XĀ))2

]
≤ σ2 + 2B2I (Y ; XA|XĀ) (1)

I σ2 = EX ,Y

[
(Y − E[Y |X ])2

]
is the irreducible error

I B s.t. | Y |≤ B a.s.
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Bound on the regression error - Sketch of the proof

inf
g∈GĀ

EX ,Y

[
(Y − g(XĀ))2

]
= EX ,Y

[
(Y − E[Y |XĀ])2

]
=

∫
p(x)

∫
p(y |x) (y − E[Y |xĀ]± E[Y |x ])2 dydx

= σ2 +

∫
p(x) (E[Y |x ]− E[Y |xĀ])2 dx

= σ2 +

∫
p(x)

(∫
y (p(y |x)− p(y |xĀ))dy

)2

dx

≤ σ2 + B2

∫
p(x)

(∫
|p(y |x)− p(y |xĀ)| dy

)2

dx

≤ σ2 + 2B2

∫
p(x)DKL (p(·|x)‖p(·|xĀ))dx

= σ2 + 2B2I (Y ; XA|XĀ).
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Bound on the classification error

Theorem 2

inf
g∈GĀ

EX ,Y

[
1{Y 6=g(XĀ)}

]
≤ ε+

√
2I (Y ; XA|XĀ) (2)

I ε = EX ,Y

[
1{Y 6=arg maxy∈Y p(y |X )}

]
is the Bayes error
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Backward elimination

I Select a threshold δ ≥ 0, the maximum error that the filter is allowed to introduce.

I Start with the full feature set

I At each step remove the feature that minimizes the

I (Y ;Xi |XĀt
\ Xi )

I Stop as soon as
t∑

h=1

Ih ≥
δ

2B2
for regression and

t∑
h=1

Ih ≥
δ2

2
for classification.
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Forward selection

In a similar fashion, we can define a forward search algorithm

I Start with no features

I At each step, look for the feature that maximizes the I (Y ;Xi |XAt )

I Stop as soon as a threshold is met
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Theoretical guarantees

Theorem 3

Backward elimination achieves an error of σ2 + δ for regression, where σ2 is the
irreducible error and ε+ δ for classification, where ε is the Bayes error.

Theorem 4

Forward selection achieves an error of σ2 − δ + 2B2I (Y ; X ) for regression, where σ2 is
the irreducible error and ε− δ +

√
2I (Y ; X ) for classification, where ε is the Bayes

error.

The proofs are based on recursively applying the equality

I (Y ;X | Z ) = I (Y ;X ,Z ) + I (Y ;Z )
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Estimating (conditional) mutual information

Mutual Information can be written in the form

I (X ;Y ) = H(X ) + H(Y )− H(X ,Y )

Problem when X is continuous and Y is discrete (classification).
We resort to the KSG estimator (Kraskov et al. 2004)

I (X ,Y ) = ψ(k) + ψ(N)−
E [ψ(nx + 1) + ψ(ny + 1)]
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Synthetic Experiments

X1, . . .X500 ∈ R30

I 30 features, only k useful (fixed)
I X1, . . .Xk | Y = 1 ∼ Nk(0, 1)

I X1, . . .Xk | Y = 0 ∼ Nk(0, 1) |
k∑

l=1

Xi > 3(k − 2)
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#F: 20 #F: 10 ER: 0.5 ER: 1.0 ∆FS: 0.15 ∆FS: 0.5 FS: 0.15 FS: 0.5
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Synthetic Experiments

X1, . . .X500 ∈ R15

I 30 features, only k useful, k ∼ U(3, 15).
I X1, . . .Xk | Y = 1 ∼ Nk(0, 1)

I X1, . . .Xk | Y = 0 ∼ Nk(0, 1) |
k∑

l=1

Xi > 3(k − 2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

error threshold (δ)

0.2

0.4
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0.8

1.0

accuracy

selected features
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Real Data

Dataset δ = 0.05 δ = 0.1 δ = 0.25 δ = 0.5 δ = 1.0

ORL 0.8 0.75 0.7 0.7375 0.7125
warpAR10P 0.97 0.98 0.98 0.98 0.98

glass* 0.99 0.99 0.99 0.99 0.99
wine 0.96 0.96 0.96 0.95 0.83

ALLAML 1.0 1.0 1.0 0.92 0.78

*: no feature removed
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Discussion and Conclusions

I New stopping condition on Mutual Information based filter feature selection

I Theoretical guarantees on the introduced error

I Less sensitive to hyperparameters

Feature work
I How to parallelize the backward elimination?

I Faster (approximate) CMI estimation in high dimension?

I How to leverage information about the learning algorithm ?
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