
A Bayesian model for network flow data:
an application to BikeMi trips

Giulia Bissoli, Celeste Principi, Gian Matteo Rinaldi, Mario Beraha and
Alessandra Guglielmi

Abstract We propose a Bayesian model for the analysis of flow counts on a net-
work for an application to a bike sharing platform (BikeMi) in Milano. Incorporat-
ing edge-specific covariates, we assume a zero-inflated Poisson mixture regression
model, which easily accommodates for the sparse nature of the network under in-
vestigation.

Abstract In questo lavoro proponiamo un modello bayesiano per l’analisi dei con-
teggi dei flussi su una rete, per un’applicazione relativa ad una piattaforma di bike
sharing di Milano (BikeMi). Incorporando covariate specifiche ad ogni arco, as-
sumiamo un modello mistura di Poisson zero-inflated, che permette di catturare
facilmente la natura sparsa delle rete presa in considerazione.

1 Introduction
Self service bike sharing systems have grown in popularity all over the world in
recent decades, with dozens of new players entering the market each year. The ex-
ploitation of this novel transport system has generated an enormous quantity of data
that could lead to a better understanding of city mobility. In this work, we analyze
data from BikeMi, Milan oldest bike sharing system. BikeMi has been introduced
in 2008, and nowadays encompasses more that 4000 bicycles with more than 250
stations.

Giulia Bissoli, Celeste Principi, Gian Matteo Rinaldi
Dipartimento di Matematica, Politecnico di Milano,
e-mail: {giulia.bissoli, celeste.principi, gianmatteo.rinaldi}@mail.polimi.it

Mario Beraha†, Alessandra Guglielmi
Dipartimento di Matematica, Politecnico di Milano
e-mail: {mario.beraha, alessandra.guglielmi}@polimi.it
† Also affiliated with Università degli Studi di Bologna
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We focus on the analysis of the flow of bikes from one station to another. By
looking at the bike sharing system as a complex network [6], we assume a Bayesian
regression model for the flow counts on the edges of the network. In particular, we
assume a mixture model [5] for the flow counts, which yields a cluster estimate of
the flows that we are able to interpret.

The structure of the paper is as follows: after having introduced the model in Sec-
tion 2 and presented the dataset in Section 3, we report some posterior inference in
Section 4, showing the goodness of fit of our model and the interesting insights from
the estimated clusters. Finally in Section 5 we compare our model to competitors.

2 Zero-inflated Poisson mixture regression models
Let G = (V,E) be a directed graph with vertices V and edges E = {(i, j)}. In our
application, we consider the problem of modelling the data flow on the edges E. For
each edge (i, j) we define the variable Yi j as the amount of bike trips from i to j taken
on a fixed period of time. We also assume the availability of a set of covariates xxxi j
for each arc, which, a priori, might influence the flow on that particular arc. The Yi js
are thus counts, so that, a standard choice to model these variables would be then to
use the Poisson distribution with suitable parameters. We also aim at capturing the
topology of the network, i.e. assigning zero flow to the edges that should not be in
the network; in addition, our model should be flexible enough to represent a wide
class of scenarios, from routes travelled very often to the ones seldom used.

Combining these insights together led us to consider the following zero-inflated
Poisson mixture regression model

Yi j|θ ,µµµ i j,λλλ
ind∼

{
θ +(1−θ)PM(0|µµµ i j,λλλ ) if Yi j = 0
(1−θ)PM(Yi j|µµµ i j,λλλ ) if Yi j > 0

(1)

log µi jk = βββ kxxxi j, (2)

for any couple of nodes (i, j). We assume that, conditionally to all parameters,
the Yi js are independent. Here PM stands for Poisson Mixture, i.e. PM(µµµ,λλλ ) =

∑
K
i=1 λiPoi(µi) with µµµ = (µ1, . . . ,µK), λλλ = (λ1, . . . ,λK), and K is a fixed positive

integer. Observe that µµµ i j = (µi j1, . . .µi jK) is linked to the p−dimensional vector xxxi j
via the canonical link function (2) through a p-dimensional regression parameter
βββ k.

The prior specification assumes parameters (βββ 1, . . . ,βββ K), λλλ and µµµ independent
with marginal distributions as follows:

βββ k
iid∼N (mmm,Σ) k = 1, ...,K (3)

λλλ ∼ Dirichlet(ααα), ααα = (α1, . . . ,αK) (4)
θ ∼U (0,1) (5)

Assuming zero-inflated likelihood thus accounts for the presence of edges in the
graph with zero flow, while the Poisson mixture let us easily model a various range
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Fig. 1: (a): The nodes of the clustered network: the size of each dot is proportional to the number
of stations it represents. (b): observed flow. (c): predicted flow. The entry of the matrix in row i,
column j represents the flow on edge (i, j).

of behaviours in the flows. Moreover, we take into account covariates as regressors
in the generalized linear model through the locations µi jk.

3 BikeMi Dataset
We consider data arising from the most popular and oldest bike sharing system in
Milan. The system is composed of 263 stations where users go and pick up and then
drop off the bikes. The dataset consists of the records of 350,093 trips between pairs
of stations between January 25th and March 6th, 2016. Using the stations as nodes in
the graph would, in principle, lead to a graph with 2632 ≈ 69k edges, which makes
the computational burden unfeasible.

As many stations lie within less than 100m from each others, we perform a clus-
tering on the geo-locations of the stations, using the popular-density based clustering
algorithm DBSCAN [4], and have consider the barycenter of each cluster as a node
in the graph. In the end, we were left with 67 nodes. We report the clusters obtained
using DBSCAN in Figure 1(a), which defines the nodes of the graph we analyze.
We have then redefined yi j, the observed flow counts between nodes i and j as the
total flow from all the stations which were collapsed through DBSCAN procedure
into node i and into node j.

Of course, other strategies are possible to reduce the dimensionality of the prob-
lem. For example one could consider Milan’s neighborhoods (NILs) as nodes in the
graph, as done in [7], and do not rely on the spatial clustering. This approach, how-
ever, would imply that trips from one node to itself (within the same NIL) might
be longer than trips from one node to another, as two bike stations might be at the
opposite sides of a NIL (former case) or just across the border of the two neighbor-
ing NILs (latter case). On the contrary DBSCAN clusters together points based on
their local density, so that the estimated clusters can genuinely be well represented
by their barycenters.



4 G. Bissoli, C. Principi, G.M. Rinaldi, M.Beraha and A. Guglielmi

Similarly as in [3], we assume that bike flow from i to j might be depend on:
(i) the geographical distance between the stations (di j) (ii) the outer strength of
the pick up node (Si) and (iii) the inner strength of the drop off node (Tj). The
outer (inner) strength of a node is defined as the total amount of trips departing
from (arriving at) it. So that, for each arch, the vector of covariates is chosen to be
xxxi j = (1,SiTj,di j).

4 Posterior Inference
We fix the hyperparameters in (3) - (4) to be mmm = (7,0,0), Σ = diag(2,1.5,1.5),
ααα = (2,2,2,2). The number of components K was selected among several possible
values as the one giving clearer interpretability of the posterior cluster estimate; with
K = 4 we were able to interpret 4 different behaviours in terms of geolocation of the
source and target nodes of the edges.

Posterior inference was computed using Stan software [2]; MCMC chains were
ran each for 2000 iterations after 2000 iterations of burn-in. Convergence was
checked using both visual inspection of the chains and standard diagnostics avail-
able in the CODA package. From the comparison between the observed flow on the
network (Figure 1 (b)) and the posterior expected value (Figure 1(c)), we see that
our model correctly assigns zero flow to several edges, while predicting accurately
the flow on the most travelled ones. It is clear that our model predicts quite well the
observed flow.

Figure 2 reports a point estimate of the clustering structure of the edges arising
from the Poisson mixture in (1), i.e. through the allocation variables identifying the
mixture components. The point estimate has been obtained by finding the MCMC
draw that minimizes the Binder loss function [1]. The first cluster includes all arcs
with low flow and consists mainly of arcs belonging to the periphery of the city.
The second group contains many arcs which are closer to the city center. The third
cluster clearly groups together arcs with high flow in the middle of the city. Finally
the last one includes only few arcs that represent the most travelled routes. The
parameter βk3, that represents the impact of the distance between node i and node j
on the flow, is strongly negative for all the clusters, as expected, except the first one,
where its values are positive although close to 0.

In all the cluster maps, the central big dot is Milan city center (Duomo), the other
recognizable nodes are Cadorna train station (on the left of the map) and Centrale
train station (top right), which, as expected, are focal points for the bike sharing
system.

5 Competitor Models
Finally, we compare the predictive performances of our approach to the ones ob-
tained by alternative models. Specifically, we consider model (1) without covariates
(0infl), a standard Poisson mixture regression (i.e. model (1) - (2) with θ ≡ 0)
(Reg) and our model (Reg0infl). The corresponding priors are matched to give
same a priori information on the same parameters. We report the comparison in
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Fig. 2: The clustering of the edges arising from the Poisson mixture model.

Table 1, where for each model the following indexes of performance are shown:
(i) MSE: the mean square error between the posterior mean and the observed flow.
(ii) LOO-ELPD: the leave one out estimate of the expected log predictive density
(computed using the loo package). (iii) LPML: the log pseudo marginal likelihood.
Reg and Reg0infl clearly outperform 0infl, moreover, Reg0infl is slightly

better than Reg. From a visual inspection of the predicted flows on both models, we
can conclude that the main difference between Reg0infl’s and Reg’s prediction
is that Reg0infl correctly assigns zero flow on a significant number of edges
while Reg assigns to the same edges a small but positive flow.
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Model MSE LOO-ELPD LMPL
Reg0infl 1,518.3 -14,270.5 -11,237.9
Reg 1,685.4 -18,347.7 -18,341.7
0infl 300,373.4 -84,862.0 -103,089.3

Table 1: Predictive performances comparison.

6 Discussion and Conclusions
In this paper we have presented a full Bayesian model to analyze the mobility of one
of the bike sharing systems in Milan. The proposed approach is based on modelling
the counts of the number of travels between pairs of (clusters of) bike stations as
the flow data on the edges of a complex network. We have assumed a zero-inflated
Poisson mixture regression model to capture both the topology of the network and
various range of behaviours in the flows, incorporating in the model also information
coming from covariates such as the pairwise geographical distance between nodes.

Through MCMC simulations, we have shown how our model compares favorably
against possible Bayesian competitors and how it describes the overall structure of
the data. Nonetheless, we believe that incorporating into the model other informa-
tion such as the proximity of a bike station to an underground stop or other places
of interest might improve the overall quality of the prediction.

In the future, we aim at applying our model to the whole network and compare
the inference. As an alternative we could also develop ad-hoc clustering strategies
to reduce the dimensionality of the dataset, aggregating more nodes in the periphery
of the city while keeping distinct the ones in the center.
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