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Introduction

We are interested on making inference on a graph G = (V, E)

> V: vertices \ / \

> E ={(i,j)} edges o—,
» Quantity of interest Yj;: flow on the edge (7, ;).

In our case, the flow is the number of trips
from node i to node j
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Dataset

» 263 BikeMi station

» 350093 trips between January 25th
and March 6th 2016

» length of each trip
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Dataset

» 263 BikeMi station

» 350093 trips between January 25th
and March 6th 2016 ¢

» length of each trip
> 2632 = 69169 possible arcs!
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Dataset
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263 BikeMi station

350093 trips between January 25th
and March 6th 2016

length of each trip
2632 = 69169 possible arcs!

DBSCAN clustering on the
geolocation of the stations

67 nodes in the reduced network
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The Bayesian Model

We consider the following Zero-inflated Poisson mixture regression model

p(Yi = y)I0, i, A 0+ (1—0)PM(O|pj, A) ify=0 ij=1,...,67
ij s V1) (I—G)PM(\/U“"’IJ’A) |fy: 172,3,...

K
PM(pe, A) = PM (11, -, i), (A1 -5 Ak)) = D AiPoi())
=1

log pjjk = BrXij

For each arc, the covariates x;; are (1,S; x T, djj)
» S;: “sourceness” of starting node (outer degree)
> T;: “targetness” of destination node (inner degree)

» d;;: geographical distance
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The Bayesian Model

We consider the following Zero-inflated Poisson mixture regression model

6+ (1—60)PM(O|uyj, A) ify=0 ij=1,...,67

ind
\/,": 07 I?AN
(Y = y)I0, 1 {(1—9)PM(YU|NU7>‘) ify=123,...

K
PM(p2, A) = PM (i1, -, 1ok ), (A, Ak)) = > AiPoi())
i=1

log pjjk = BrxXij
For each arc, the covariates x;; are (1,S; x T, djj)

B8 Ny(m,T) k=1,....K

A ~ Dirichlet(a)
0 ~U(0,1)

K =4, m=(7,0,0), ¥ =diag(2,15,15), a=(2,2,2,2)
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Posterior Inference

MCMC simulation was performed using Stan software.
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Clustering

The cluster estimate was found minimizing Binder's loss function.

Figure:

Estimated cluster 1
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Figure: Posterior mean flow
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Clustering

The cluster estimate was found minimizing Binder's loss function.

Figure: Estimated cluster 2
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Clustering

Figure: Estimated cluster 3

The cluster estimate was found minimizing Binder's loss function.
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Clustering

The cluster estimate was found minimizing Binder's loss function.

Figure: Estimated cluster 4
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Comparison

We assess the predictive performances of our model against other possible Bayesian
“competitors”.

0+ (]. — Q)PM(O“,I,,'J',)\) if Y,'j =0

> Bes0ingl Y;i10, i, A
eg0din 1% i (1= 0)PM(Yylpy,A)  if V>0

K
PM(p, A) = \iPoi(pi)
i—1

log eijic = Brxij-
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Comparison

We assess the predictive performances of our model against other possible Bayesian
“competitors”.

> RegOinfl

(I—Q)PM(YU“J,,/\) if Y,j >0
K
PM(p, ) = AiPoi(y)
i=1

in 0+ 1—9P|\/|0u,)\ if Yi=0
Y,'j’@, ,Af\‘/j ( ) ( ‘ ) ! J
» Oinfl
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Comparison

We assess the predictive performances of our model against other possible Bayesian
“competitors” .

> i -
RegOinfl Yij‘eaufj?A I’n\sj PM(YIJ‘IJ’W)‘)

> 0infl K
PM(p,A) = > AiPoi(p)
> Reg i=1
log pjjk = BrXij.
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Comparison

We assess the predictive performances of our model against other possible Bayesian
“competitors” .

> RegOinfl Model MSE  LOO-ELPD  LPML
RegOinfl | 1,518.3 | -14,270.5 | -11,237.9
> 0infl Reg 16854 | -18347.7 | -18,341.7
0infl 300,373.4 | -84,862.0 | -103,089.3
> Reg

Table: Predictive performances comparison.

7/9



Conclusions

P Presented a class of full Bayesian models to analyze the mobility of BikeMi

» Zero-inflated Poisson mixture regression models captures both the topology of the
network and different range of behaviours in the flows

» Incorporate in the model edge-specific covariates
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Conclusions

» Presented a class of full Bayesian models to analyze the mobility of BikeMi

» Zero-inflated Poisson mixture regression models captures both the topology of the
network and different range of behaviours in the flows

» Incorporate in the model edge-specific covariates

Future developments

» Different clustering
» Considering the whole network

» Node specific covariates such as proximity to points of interest
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