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Introduction

We are interested on making inference on a graph G = (V ,E )

I V : vertices

I E = {(i , j)} edges

I Quantity of interest Yij : flow on the edge (i , j).
In our case, the flow is the number of trips
from node i to node j
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Dataset

I 263 BikeMi station

I 350093 trips between January 25th
and March 6th 2016

I length of each trip

I 2632 = 69169 possible arcs!

I DBSCAN clustering on the
geolocation of the stations

I 67 nodes in the reduced network
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The Bayesian Model

We consider the following Zero-inflated Poisson mixture regression model

p(Yij = y)|θ,µij ,λ
ind∼

{
θ + (1− θ)PM(0|µij ,λ) if y = 0 i , j = 1, . . . , 67

(1− θ)PM(Yij |µij ,λ) if y = 1, 2, 3, . . .

PM(µ,λ) = PM ((µ1, . . . , µK ), (λ1, . . . , λK )) =
K∑
i=1

λiPoi(µi )

logµijk = βkxij

For each arc, the covariates xij are (1, Si × Tj , dij)

I Si : “sourceness” of starting node (outer degree)

I Tj : “targetness” of destination node (inner degree)

I dij : geographical distance
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PM(µ,λ) = PM ((µ1, . . . , µK ), (λ1, . . . , λK )) =
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i=1

λiPoi(µi )

logµijk = βkxij

For each arc, the covariates xij are (1, Si × Tj , dij)

βk
iid∼ N3(m,Σ) k = 1, . . . ,K

λ ∼ Dirichlet(α)

θ ∼ U(0, 1)

K = 4, m = (7, 0, 0), Σ = diag(2, 1.5, 1.5), α = (2, 2, 2, 2)
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Posterior Inference

MCMC simulation was performed using Stan software.

Figure: Observed flow Figure: Predicted flow

5 / 9



Clustering

The cluster estimate was found minimizing Binder’s loss function.

Figure: Estimated cluster 1 Figure: Posterior mean flow
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Clustering
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Figure: Estimated cluster 2 Figure: Posterior mean flow
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Clustering

The cluster estimate was found minimizing Binder’s loss function.

Figure: Estimated cluster 3 Figure: Posterior mean flow
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Clustering

The cluster estimate was found minimizing Binder’s loss function.

Figure: Estimated cluster 4 Figure: Posterior mean flow

6 / 9



Comparison

We assess the predictive performances of our model against other possible Bayesian
“competitors”.

I Reg0infl

I 0infl

I Reg

Yij |θ,µij ,λ
ind∼

{
θ + (1− θ)PM(0|µij ,λ) if Yij = 0

(1− θ)PM(Yij |µij ,λ) if Yij > 0

PM(µ,λ) =
K∑
i=1

λiPoi(µi )

logµijk = βkxij .
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Comparison

We assess the predictive performances of our model against other possible Bayesian
“competitors”.

I Reg0infl

I 0infl

I Reg

Model MSE LOO-ELPD LPML
Reg0infl 1,518.3 -14,270.5 -11,237.9
Reg 1,685.4 -18,347.7 -18,341.7
0infl 300,373.4 -84,862.0 -103,089.3

Table: Predictive performances comparison.
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Conclusions

I Presented a class of full Bayesian models to analyze the mobility of BikeMi

I Zero-inflated Poisson mixture regression models captures both the topology of the
network and different range of behaviours in the flows

I Incorporate in the model edge-specific covariates

Future developments

I Different clustering

I Considering the whole network

I Node specific covariates such as proximity to points of interest
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