A Bayesian model for network flow data: an application to BikeMi trips

Mario Beraha

Joint work with Giulia Bissoli, Celeste Principi, Gian Matteo Rinaldi and Alessandra Guglielmi

20 June 2019

Introduction

We are interested on making inference on a graph $\mathcal{G} = (V, E)$

- ► *V*: vertices
- ightharpoonup E = {(*i*, *j*)} edges
- Quantity of interest Y_{ij}: flow on the edge (i, j). In our case, the flow is the number of trips from node i to node j

Dataset

- ▶ 263 BikeMi station
- ➤ **350093** trips between January 25th and March 6th 2016
- ► length of each trip

Dataset

- ▶ 263 BikeMi station
- ➤ **350093** trips between January 25th and March 6th 2016
- ► length of each trip
- $ightharpoonup 263^2 = 69169$ possible arcs!

Dataset

- ▶ 263 BikeMi station
- ➤ **350093** trips between January 25th and March 6th 2016
- ► length of each trip
- $ightharpoonup 263^2 = 69169$ possible arcs!
- ► DBSCAN clustering on the geolocation of the stations
- ▶ 67 nodes in the reduced network

The Bayesian Model

We consider the following Zero-inflated Poisson mixture regression model

$$p(Y_{ij} = y)|\theta, \boldsymbol{\mu}_{ij}, \boldsymbol{\lambda} \stackrel{\text{ind}}{\sim} \begin{cases} \theta + (1 - \theta) \mathsf{PM}(0|\boldsymbol{\mu}_{ij}, \boldsymbol{\lambda}) & \text{if } y = 0 \quad i, j = 1, \dots, 67 \\ (1 - \theta) \mathsf{PM}(Y_{ij}|\boldsymbol{\mu}_{ij}, \boldsymbol{\lambda}) & \text{if } y = 1, 2, 3, \dots \end{cases}$$

$$\mathsf{PM}(\boldsymbol{\mu}, \boldsymbol{\lambda}) = \mathsf{PM}\left((\mu_1, \dots, \mu_K), (\lambda_1, \dots, \lambda_K)\right) = \sum_{i=1}^K \lambda_i \mathsf{Poi}(\mu_i)$$

$$\log \mu_{ijk} = \beta_k \boldsymbol{x}_{ij}$$

For each arc, the covariates x_{ij} are $(1, S_i \times T_j, d_{ij})$

- \triangleright S_i : "sourceness" of starting node (outer degree)
- $ightharpoonup T_j$: "targetness" of destination node (inner degree)
- ► d_{ij}: geographical distance

The Bayesian Model

We consider the following Zero-inflated Poisson mixture regression model

$$p(Y_{ij} = y)|\theta, \boldsymbol{\mu}_{ij}, \boldsymbol{\lambda} \stackrel{\text{ind}}{\sim} \begin{cases} \theta + (1 - \theta) \mathsf{PM}(0|\boldsymbol{\mu}_{ij}, \boldsymbol{\lambda}) & \text{if } y = 0 \quad i, j = 1, \dots, 67 \\ (1 - \theta) \mathsf{PM}(Y_{ij}|\boldsymbol{\mu}_{ij}, \boldsymbol{\lambda}) & \text{if } y = 1, 2, 3, \dots \end{cases}$$

$$\mathsf{PM}(\boldsymbol{\mu}, \boldsymbol{\lambda}) = \mathsf{PM}\left((\mu_1, \dots, \mu_K), (\lambda_1, \dots, \lambda_K)\right) = \sum_{i=1}^K \lambda_i \mathsf{Poi}(\mu_i)$$

$$\log \mu_{iik} = \beta_k \boldsymbol{x}_{ii}$$

For each arc, the covariates
$$x_{ij}$$
 are $(1, S_i \times T_j, d_{ij})$

$$eta_k \overset{ ext{iid}}{\sim} \mathcal{N}_3(m{m}, \Sigma) \quad k = 1, \dots, K$$
 $m{\lambda} \sim \mathsf{Dirichlet}(m{lpha})$ $m{ heta} \sim \mathcal{U}(0, 1)$

$$K = 4$$
, $\mathbf{m} = (7,0,0)$, $\Sigma = diag(2,1.5,1.5)$, $\alpha = (2,2,2,2)$

Posterior Inference

MCMC simulation was performed using Stan software.

Figure: Estimated cluster 1

Figure: Posterior mean flow

Figure: Estimated cluster 2

Figure: Posterior mean flow

Figure: Estimated cluster 3

Figure: Posterior mean flow

Figure: Estimated cluster 4

Figure: Posterior mean flow

We assess the predictive performances of our model against other possible Bayesian "competitors".

► Reg0infl

$$egin{aligned} Y_{ij}| heta,oldsymbol{\mu}_{ij},oldsymbol{\lambda} & \overset{\mathsf{ind}}{\sim} egin{aligned} heta+(1- heta)\mathsf{PM}(0|oldsymbol{\mu}_{ij},oldsymbol{\lambda}) & \mathsf{if}\ Y_{ij}=0\ (1- heta)\mathsf{PM}(Y_{ij}|oldsymbol{\mu}_{ij},oldsymbol{\lambda}) & \mathsf{if}\ Y_{ij}>0 \end{aligned}$$
 $\mathsf{PM}(oldsymbol{\mu},oldsymbol{\lambda}) = \sum_{i=1}^K \lambda_i \mathsf{Poi}(\mu_i) \ \log \mu_{ijk} = eta_k oldsymbol{x}_{ij}. \end{aligned}$

We assess the predictive performances of our model against other possible Bayesian "competitors".

- Reg0infl
- ► Oinfl

$$Y_{ij}| heta, oldsymbol{\mu}, oldsymbol{\lambda} \stackrel{ ext{ind}}{\sim} egin{cases} heta + (1- heta)\mathsf{PM}(0|oldsymbol{\mu}, oldsymbol{\lambda}) & ext{if } Y_{ij} = 0 \ (1- heta)\mathsf{PM}(Y_{ij}|oldsymbol{\mu}, oldsymbol{\lambda}) & ext{if } Y_{ij} > 0 \end{cases}$$
 $\mathsf{PM}(oldsymbol{\mu}, oldsymbol{\lambda}) = \sum_{i=1}^K \lambda_i \mathsf{Poi}(\mu_i)$

We assess the predictive performances of our model against other possible Bayesian "competitors".

- ► Reg0infl
- ► Oinfl
- ► Reg

$$egin{aligned} Y_{ij}| heta, oldsymbol{\mu}_{ij}, oldsymbol{\lambda} &\overset{\mathsf{ind}}{\sim} \mathsf{PM}(Y_{ij}|oldsymbol{\mu}_{ij}, oldsymbol{\lambda}) \ \mathsf{PM}(oldsymbol{\mu}, oldsymbol{\lambda}) &= \sum_{i=1}^K \lambda_i \mathsf{Poi}(\mu_i) \ \mathsf{log}\, \mu_{ijk} &= eta_k oldsymbol{x}_{ij}. \end{aligned}$$

We assess the predictive performances of our model against other possible Bayesian "competitors".

- ► Reg0infl
- ▶ Oinfl
- ► Reg

Model	MSE	LOO-ELPD	LPML
Reg0infl	1,518.3	-14,270.5	-11,237.9
Reg	1,685.4	-18,347.7	-18,341.7
Oinfl	300,373.4	-84,862.0	-103,089.3

Table: Predictive performances comparison.

Conclusions

- ▶ Presented a class of full Bayesian models to analyze the mobility of BikeMi
- ➤ Zero-inflated Poisson mixture regression models captures both the topology of the network and different range of behaviours in the flows
- ► Incorporate in the model edge-specific covariates

Conclusions

- ▶ Presented a class of full Bayesian models to analyze the mobility of BikeMi
- ➤ Zero-inflated Poisson mixture regression models captures both the topology of the network and different range of behaviours in the flows
- Incorporate in the model edge-specific covariates

Future developments

- Different clustering
- Considering the whole network
- ▶ Node specific covariates such as proximity to points of interest

References

- [1] David A Binder. "Bayesian cluster analysis". 1978.
- [2] Bob Carpenter et al. "Stan: A Probabilistic Programming Language". 2017.
- [3] Peter Congdon. "A Bayesian approach to prediction using the gravity model, with an application to patient flow modeling". 2000.
- [4] Martin Ester et al. "Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification". 1995.
- [5] Sylvia Frühwirth-Schnatter. Finite mixture and Markov switching models. 2006.
- [6] Anna Goldenberg et al. "A survey of statistical network models". 2010.
- [7] Michael Hahsler and Matthew Piekenbrock. dbscan: Density Based Clustering of Applications with Noise (DBSCAN) and Related Algorithms. 2018.
- [8] Agostino Torti et al. Modeling time-varying mobility flows using function-on-function regression: analysis of a bike sharing system in the city of Milan. 2019.